Dietary zinc deficiency and expression of T lymphocyte signal transduction proteins.


Taylor CG, Giesbrecht JA




Can J Physiol Pharmacol


Impaired immune function in dietary zinc (Zn) deficiency is characterized in part by reduced lymphocyte numbers (lymphopenia) and depressed cell-mediated (T lymphocyte) immune function, however, the causative mechanisms at the molecular level have not been elucidated. This paper will focus on the role of dietary Zn in T lymphocyte signal transduction, and specifically, the early Zn-dependent steps for phosphorylation and the putative Zn-finger proteins or Zn-metalloenzymes that may be part of the molecular mechanism for explaining immune dysfunction in Zn deficiency. One of the major recent findings is that murine splenic T lymphocyte p56lck expression is elevated in dietary Zn deficiency and caloric deficiency. Based on the known functions of p56lck, it is proposed that elevated p56lck may contribute to altered thymocyte maturation, apoptosis, and lymphopenia in dietary Zn deficiency and other malnutrition syndromes.