Bioenergetics in clinical medicine. III. Inhibition of coenzyme Q10-enzymes by clinically used anti-hypertensive drugs.


Kishi H




Res Commun Chem Pathol Pharmacol


Background data revealed that some American and Japanese patients with essential hypertension, including many who were not being treated with any anti-hypertensive drug, had a deficiency of coenzyme Q10. Eight clinically used anti-hypertensive drugs have now been tested for inhibition of two mitochondrial coenzyme Q10-enzymes of heart tissue, succinoxidase and NADH-oxidase. Diazoxide and propranolol significantly inhibited the CoQ10-succinoxidase and CoQ10-NADH-oxidase, respectively. Metoprolol did not inhibit succinoxidase, and was one-fourth as active as propranolol for inhibition of NADH-oxidase. Hydrochlorothiazide, hydralazine, ans clonidine also inhibited CoQ10-NADH-oxidase. Reserpine did not inhibit either CoQ10-enzyme, and methyldopa was a very eak inhibitor of succinoxidase. The internationally recognized clinical side-effects of propranolol may be due, in part, to inhibition of CoQ10-enzymes which are indispensable in the bioenergetics of cardiac function. A pre-existing deficiency of coenzyme Q10 in the myocardium of hypertensive patients could be augmented by subsequent treatment with propranolol, possibly to the "life-threatening" state described by others.