image
Conservation

Compilation of herbal plants (description, geographical distribution, taxonomy, line drawings), biodiversity and herbarium.

Read More
image
Research & Publication

Description of herbal and T&CM research, searchable publication and process from medicinal plant discovery to clinical trial in producing a high-quality registered herbal drug.

Read More
 
Traditional & Complementary Medicine (T&CM)

 

Definition and description of therapies, policy, training and education, research in the practise of (T&CM) and integrated medicine system.           

Read More

 

News Update

Announcement & Advertisement

Forthcoming Events

14th International Conference on Biopharma and Biotherapeutics

From Fri, 25. October 2019 Until Sat, 26. October 2019

World Conference on Pharmaceutical Chemistry and Clinical Research

From Wed, 27. November 2019 Until Thu, 28. November 2019

15th Annual Congress on Pharmacology and Toxicology

From Mon, 2. December 2019 Until Tue, 3. December 2019

3rd International Conference and Exhibition on Pharmaceutical Nanotechnology and Nanomedicine

From Mon, 24. February 2020 Until Tue, 25. February 2020

21st Interntaional Conference and Exhibition on Pharmaceutics & Novel Drug Delivery Systems

From Wed, 11. March 2020 Until Thu, 12. March 2020

Free radicals scavenging action and anti-enzyme activities of procyanidines from Vitis vinifera. A mechanism for their capillary protective action.

Author

Maffei Facino R, Carini M, Aldini G

Date

5/1994

Journal

Arzneimittelforschung

Abstract

The scavenging by procyanidines (polyphenol oligomers from Vitis vinifera seeds, CAS 85594-37-2) of reactive oxygen species (ROS) involved in the onset (HO degrees) and the maintenance of microvascular injury (lipid radicals R degrees, RO degrees, ROO degrees) has been studied in phosphatidylcholine liposomes (PCL), using two different models of free radical generation: a) iron- promoted and b) ultrasound-induced lipid peroxidation. In a) lipid peroxidation was assessed by determination of thiobarbituric acid- reactive substances (TBARS); in b) by determination of conjugated dienes, formation of breakdown carbonyl products (as 2,4- dinitrophenylhydrazones) and loss of native phosphatidylcholine. In the iron-promoted (Fenton-driven) model, procyanidines had a remarkable, dose-dependent antilipoperoxidant activity (IC50 = 2.5 mumol/l), more than one order of magnitude greater than that of the monomeric unit catechin (IC50 = 50 mumol/l), activity which is due, at least in part, to their metal-chelating properties. In the more specific model b), which discriminates between the initiator (hydroxyl radical from water sonolysis) and the propagator species of lipid peroxidation (the peroxyl radical, from autooxidation of C- centered radicals), procyanidines are highly effective in preventing conjugated diene formation in both the induction (IC50 = 0.1 mumol/l) and propagation (IC50 = 0.05 mumol/l) phases (the scavenging effect of alpha-tocopherol was weaker, with IC50 of 1.5 and 1.25 mumol/l). In addition, procyanidines at 0.5 mumol/l markedly delayed the onset of the breakdown phase (48 h), totally inhibiting during this time the formation of degradation products (the lag-time induced by alpha- tocopherol was only of 24 h at 10 mumol/l concentration). The HO degrees entrapping capacity of these compounds was further confirmed by UV studies and by electron spin resonance (ESR) spectroscopy, using DMPO as spin trapper: procyanidines markedly reduced, in a dose- dependent fashion, the signal intensity of the DMPO-OH radical spin adduct (100% inhibition at 40 mumol/l). The results of the second part of this study show that procyanidines, in addition to free radical scavenging action, strongly and non-competitively, inhibit xanthine oxidase activity, the enzyme which triggers the oxy radical cascade (IC50 = 2.4 mumol/l). In addition procyanidines non- competitively inhibit the activities of the proteolytic enzymes collagenase (IC50 = 38 mumol/l) and elastase (IC50 = 4.24 mumol/l) and of the glycosidases hyaluronidase and beta-glucuronidase (IC50 = 80 mumol/l and 1.1 mumol/l), involved in the turnover of the main structural components of the extravascular matrix collagen, elastin and hyaluronic acid.(ABSTRACT TRUNCATED AT 400 WORDS)

Explore Further

Consumer Data

Consumer data including medicinal herbs, dietary supplement monographs, health condition monographs and interactions and depletions.                                    

Read More
Professional Data

Professional data organized into medicinal herbs, dietary supplement monographs, health condition monographs, T&CM herbs, formulas, health conditions, interactions and depletions.

Read More
International Data

We offer International linkages to provide extensive content pertaining to many facets of T&CM as well as Integrated Medicine. Please register for access.    

Read More